No description
Find a file
Ahmet Kaan GÜMÜŞ ed7407743f pre commit
2024-11-20 00:20:40 +03:00
artificial_bee_colony pre commit 2024-11-20 00:20:40 +03:00
differential_evolution fix: 🐛 Overflow the bound when creating new value 2024-11-20 00:20:40 +03:00
simulated_annealing fix: 🐛 negative values cause problem 2024-11-20 00:20:40 +03:00
.gitignore fix: 🐛 negative values cause problem 2024-11-20 00:20:40 +03:00
LICENSE Initial commit 2024-11-20 00:20:40 +03:00
README.md feat: differential_evolution 2024-11-20 00:20:40 +03:00

Optimization Algorithms

Steepest Descent

1- We need starting solution x^t. Reset the iteration which is t. Specify tolerance value as ε.

2- at x^t point calculate g^t gradient and ||g^t|| then if ||g^t|| <= ε stop it, else continue.

3- Specify road direction as d^t = -g^t.

4- Calculate f(x^t + a^t*d^t) as like a^t (step size) is minimum.

5- Calculate new solution point based on: x^(t+1) = x^t + a^t*d^t.

6- Increase iteration counter by 1 and go to 2.step.